Discussion Problems for Math 180

Tuesday, March 3, 2015

Review

- 1. (a) What is the area of a circle with radius r?
 - (b) What is the volume of a box with length ℓ , width w, and height h? What is its surface area?
- 2. Differentiate:
 - (a) $e^{2x} \sin(4x)$.
 - (b) $\ln(\arctan(x))\arctan(x)$

This time

- 3. A circle is shrinking in such a way that its radius is decreasing at a constant rate of two inches per second. How fast is the area of the circle decreasing when the circle is one foot across?
- 4. Sketch the graph of a differentiable function f with domain $(-\infty, \infty)$ which has f'(x) > 0 for -1 < x < 1 and f'(x) < 0 on $(-\infty, -1) \cup (1, \infty)$ and such that f(2) = 3.
- 5. Suppose we have 40 yards of fencing and want to enclose a rectangular area next to a 50-yard-long wall, like so:

That is, we don't need to put fencing on the side next to the wall. What dimensions should we build the fence with to get the largest possible enclosed area?

- 6. Determine where the function $x^3 3x + 7$ is increasing and decreasing. Use this to determine its maximum and minimum values on the interval [0, 5].
- 7. For what positive value of x is x^x the smallest?